The Next ODROID!

Introduced in 2014, the Samsung Exynos5422 used for the XU4 is still very competitive against other single board computers.
We currently plan to keep producing the XU4, HC1, MC1 and HC2 with continuous Kernel update for a few more years.

Many forum members are inquiring about a new ODROID board, and the time to talk about the next ODROID has arrived.
The major features requested are:
–    Faster CPU
–    More DRAM memory
–    Faster GPU
–    Faster storage IO
–    More Linux friendly

We have internally evaluated the S912, RTD1295, and RK3399 in 2017.
Only the RK3399 meets the requirements from our community and will be used as the basis of a new ODROID.
We call it ODROID-N1. The “N” stands for Next.

ODROID-N1 key features:
–    Rockchip AArch64 RK3399 Hexa-core processor
–    Dual-core ARM Cortex-A72 2Ghz processor and Quad-core ARM Cortex-A53 1.5Ghz processor, big-LITTLE architecture
–    Mali-T860MP4 GPU, support OpenGL ES1.1/2.0/3.0, OpenCL 1.2
–    4Gbyte DDR3-1866 RAM, Dual channel interface for 64bit data bus width
–    2 x SATA3 port, native SATA implementation via PCIe-gen2 to SATA3 interface
–    eMMC 5.0 (HS400) Flash storage and a UHS capable micro-SD slot.
–    2 x USB 3.0 host port
–    2 x USB 2.0 host port.
–    Gigabit Ethernet port
–    HDMI 2.0 for 4K display
–    40-Pin GPIO port
–    OS: Ubuntu 18.04 or Debian Stretch with Kernel 4.4 LTS, Android 7.1
–    Size: 90 x 90 x 20 mm approx. (excluding cooler)
–    Power: 12V/2A input (Attaching two 3.5inch HDD requires a 12V/4A PSU)
–    Price: US$110 (To be adjusted based on DRAM market price changes)
–    Mass production schedule: TBD

In the next several days, we will send 30 pre-selected members of our community a free N1 engineering sample board to test. We call it a “Debug Party”.
We hope that mass production will begin in May or June if the “Debug Party” is successful.
However, if the N1 board is not affordable, or there are too many unresolved issues then mass production will be delayed.
If there is enough demand, we can consider an ODROID-N1-Lite model.  It will have 2GByte RAM and omit the SATA ports at a $75 price point.

N1 block diagram and GPIO pin maps

 

CPU and DRAM performance
We have run a few basic benchmark tests on N1 with Ubuntu 18.04 nightly build.

All cores
When we ran UnixBench with all the CPU cores in parallel. The performance was not significantly different from XU4.
If your application software uses all the cores in parallel, the performance difference between XU4 and N1 will likely be minimal.

Single, Big Core
The single core Nbench and memory-bandwidth benchmark show a larger difference in the ODROID-N1 performance.
Due to significant improvements in the newer ARM architecture, the N1’s Cortex-A72 CPUs are much faster than the XU4’s Cortex-A15 CPUs.
When we ran the same benchmarks with only one big-core, we see this in the results. Therefore, we can say A72 is 20~30% faster than A15.

Single, Little Core
The FPU performance in A53 is much better than A7, as expected.

Thermal Throttling Characteristics
There will be two different N1 models. One will have an active heatsink while the other will have a passive heatsink like the previous ODROID-XU4 and ODROID-XU4Q.

We ran some thermal tests with the following conditions:
Big Cluster – Cortex-A72, 1.992Ghz 2cores (Performance governor)
Little Cluster – Cortex-A53, 1.512Ghz 4cores (Performance governor)
Fan – ODROID-XU4 Fan
Heatsink – ODROID-XU4Q Heatsink
Default test time – over 30 min

Test Case 1: Stress test with a passive cooler

•    Blue – Big cluster frequency : 2Ghz clock downs to 1.8Ghz or 1.6Ghz from time to time due to the thermal throttling
•    Red – Temperature (maximum : 81.6 °C, minimum : 47.5 °C, Average : 74.5 °C)

Test Case 2: Stress test with an active cooler fan

•    Blue – Big cluster frequency: 2Ghz stock frequency doesn’t change.
•    Red – Temperature ( maximum : 55.5 °C, minimum: 43.3 °C, Average: 53.6 °C)

If you want to keep run your heavy software continuously, consider using an active cooling fan.
Otherwise,  a passive heatsink should be enough for many use cases.

GPU performance
The N1’s GPU is 1.5~1.8 times faster than XU4’s.
XU4 has six shader units while N1 has four, but the N1’s Mali-T860 has a much more advanced architecture than XU4’s Mali-T628.
We ran the Android Antutu 3D GPU benchmark on XU4 and N1 with the same 1080p resolution for the comparison.

SATA interface performance
There are two native SATA3 ports on the N1 board. The SATA3 interface is implemented using 1 x PCIe link in the RK3399.

Two SATA3 storage devices can connect to the N1 board via standard SATA data and power cables.  The PCIe host can be configured in Gen1or Gen2 mode.
When we ran the IOZONE test with a SSD, we could get around 380MB/sec with Gen2 mode even though we expected more than 450MB/sec.
We suspect that the SoC internal bus connection has a bottleneck. Further investigation is needed to find any room for improvement.
Despite this, 380MB/sec is not a bad number in the ARM SBC world.

USB 3.0 Performance
As expected, the JMS578 UAS bridged SSD showed around 380MB/sec transfer speed just as on the XU4 board.

Gbit Ethernet Performance
With the iperf test, we achieved the expected Ethernet performance results. All the ODROID boards consistently have over 920Mbps of bidirectional transfer speed.

Samba/CIFS network storage performance is also reasonably fast with a HDD/SSD on the SATA ports.

Linux Support
We tested Linux platform support with Debian Stretch 9.3 in addition to Ubuntu 18.04 nightly build.
Because Ubuntu 18.04 is still under very active development (tons of updates every day), we decided to wait until Canonical’s official release in late April before supporting it.
Therefore, our “Debug Party” will use Debian instead of Ubuntu for the initial few months.

LXDE based simple Debian runs quite well.
Mali T860 GPU runs with r13p0 driver on X11.  The “es2gears” OpenGL-ES2 test application works with ~60FPS due to VSYNC.

1080p video playback on Youtube in Chromium Browser is also accelerated with well-implemented VDPAU and V4L2 video codec drivers and libraries.
VPU acceleration on Gstreamer and VLC seems to be a high possibility too.

WebGL GPU acceleration on Chromium Browser is also working reasonably well.

Linux Kernel version
We’ve ported and tested Kernel 4.14 as well as 4.4.  The latest Kernel 4.14 works fine except for some VPU/GPU driver glitches.
Due to this, we may keep using Kernel 4.4 until Rockchip releases a stable 4.14 BSP.  Kernel 4.4 LTS will be maintained until Feb, 2022 by Greg Kroah-Hartman.


“Debug Party”

The engineering sample gift box will contain the following items:
– N1 board (4GB RAM + SATA + Active Cooler)
– 16GB Orange eMMC with pre-installed Debian image.
– 12V/2A PSU with proper AC power cable for your region.
– SATA power cable
– Laser cut acrylic case for evaluation. (We will design an official case based on community member’s feedback later)

Known issues in the engineering sample PCB:
– Because the SATA power connector has no 12Volt rail, only 2.5” SSD/HDD storage devices can be used.  The 12V rail will be added to the mass production version PCB for 3.5” HDD support.
– The UART port on the 40pin GPIO header doesn’t work due to a missing power line in the level-shifter circuit.  We will solder a wire on the PCB to solve this issue which will be corrected on the mass production version.
– A 128Mbit(16MB) SPI flash memory chip will be added if our SPI boot implementation is successful.
– Other unidentified issues likely exist.

You can join the N1 discussion here.
https://forum.odroid.com/viewtopic.php?f=29&t=29932

Linux Kernel 4.14 for ODROID-XU4/XU3/HC1/MC1

Linus Torvalds has announced the release of Linux 4.14, the latest stable release of the Linux kernel. Linux 4.14 features a number of new features and changes, and is set to become the next long term support (LTS) release backed for the next several years. We proudly announce the ODROID series on the same boat, ODROID-XU4 / ODROID-XU4Q / ODROID-HC1 / ODROID-MC1 / ODROID-XU3.

New Ubuntu OS image for the ODROID series has the following features:

– Linux Kernel LTS 4.14.0
– U-Boot 2017.05
– FFMPEG fully supports hardware acceleration, both encoded and decoded
– Kodi 17.6 (1080p video playback issue fixed)
– GPU/WebGL acceleration is enabled in Chromium browser
– CPU performance-counter feature works with big and little cores
– Removed broken Firefox
– Fixed mouse cursor blink issue

With each Linux kernel development cycle, it is getting easier to get updates to the latest mainline kernel due to the efforts of Samsung and the community. Some device drivers are added in the kernel which is not included in the mainline version.

Long Term Support (LTS) kernel support will get support until Jan, 2020. This is great news for the owners of small, extensible, powerful and inexpensive boards such as the ODROIDs.

Download it from this link.
https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.14/20171212

You can upgrade from 4.9 to 4.14 with following commands. You need to backup your important data first.

sudo apt update
sudo apt upgrade
sudo apt dist-upgrade
sudo apt install xserver-xorg-video-armsoc ffmpeg
sudo apt install linux-image-xu3 
sync
sudo reboot

When you install “linux-image-xu3” package, you will meet a dialogue box and you have to choose “No” to proceed Kernel update.

After update, you can check Kernel version.

odroid@odroid:~$ uname -a
Linux odroid 4.14.0-83 #1 SMP PREEMPT Thu Nov 23 14:07:46 UTC 2017 armv7l armv7l armv7l GNU/Linux

Please note that we will no longer support Kernel 4.9 due to our limited resources. We will keep updating Kernel 4.14 LTS only.

If you have any issues, please post it on the Kernel 4.14 development sub-forum.
https://forum.odroid.com/viewforum.php?f=146

How to install ExaGear Desktop Trial on Odroid

Thank to Eltechs for the great instruction and giving ODROID users a trail. This article is written by Eltechs team.
Please share your experience on ODROID forum.

ExaGear Desktop is a powerful emulator for porting almost any x86 applications to ARM-based devices. In a nutshell, if you need some Windows apps or on your Odroid for any specific purpose (e.g. Notepad++ or even MS Word), ExaGear is the best solution to make it happen. Not mentioning the fact, that some native Linux applications, such as Skype and TeamViewer, when launched within ExaGear run even faster than launched via Wine on Linux. If you need more information visit our product page!

Install ExaGear Desktop Trial on Odroid
Our ExaGear Odroid Trial is kept on Odroid repos and is available for the following ODROID models:

ODROID-XU4 / XU3
ODROID-C2
ODROID-C1+ / C1
ODROID-U3 / U2 / X2 / X

Within the following OS images on:

Ubuntu 16.04
Debian Jessie
ODROID GameStation Turbo
DietPi

 

Within the following OS images on:
1. Connect a keyboard and a mouse to your Odroid device, or connect to it remotely – whatever you got used to.
2. Call for the command line and input the following commands to update the system.
 $ apt-get update
3. After a few minutes of auto-updating, you need to proceed with the following command:
 $ apt-get install exagear-desktop
4. As soon as the installation is finished, simply switch on the ExaGear software:
 $ exagear
5. The pop-up window will appear for you to provide your name and e-mail address. After you are done with that your ExaGear Odroid Trial will be activated and will last for 3 days from the moment of activation.

You might want to check if ExaGear is properly installed on you Odroid device. You can do it the following way:

 $ uname -a
You should get the output like:
Linux odroid 4.9.51-64 #1 SMP PREEMPT Sat Sep 23 03:28:28 UTC 2017 i686 i686 i686 GNU/Linux
6. Finally, we recommend to check that everything is OK by running the “arch” command (it should result in “i686” output):

$ arch
i686
Playing Windows Games on Odroid
Well, you are done with the installation and activation of your trial, so it’s the very time to enjoy the full power of ExaGear Desktop emulator by playing different famous Windows games on your Odroid device. Of course, gaming on Odroid is just a very small part of what ExaGear software can really do, but this user case is very representative and after all simply cool!
Tobias Schaaf from Odroid Magazine has prepared an outstanding article, covering some of the most popular PC games to be installed and played on Odroid, using ExaGear Desktop as an emulation machine and PlayOnLinux app. Read the ultimate tutorial here or watch a detailed video-guide below!
Moreover, as a bonus, he has prepared a list of games compatibility for Odroid, tested by him personally on Odroid XU4 model. See the table bellow:

 

Linux x86 Compatibility list for ODROID XU3/XU4 running ExaGear 2.1 Desktop 

Game Rating Notes
Airline Tycoon Deluxe Perfect Uses Desktop resolution, up to 720p should run fine

Windows x86 Compatibility list for ODROID XU3/XU4 running ExaGear 2.1 Desktop

Game Rating Notes
7th Legion Perfect 640×480 only
8th Wonder of the World Very Good no music, long loading times, many resolutions, very demanding
Age of Empires 1 + The Rise of Rome Very Good No Music (no MIDI support in ExaGear)
Age of Wonders Perfect Requires IndeoVideo, offers many in game resolutions
Airline Tycoon Deluxe Broken Fonts don’t work can’t be played that way (else perfect)
Alien Nations Perfect requires: amstream, quartz, icodecs/iv5setup
Alpha Centaruri + Alien Crossfire Perfect use PlayOnLinux installer
Anno 1602 Perfect Requires NoCD patch
Arcanum: Of Steamworks and Magick Obscura Perfect 800×600 only
Atrox Very Good Very similar to Starcraft, supports 800×600 and 640×480 resolution, Videos are not working
Balls of Steel Perfect 800×600 max resolution
Caesar III Perfect runs in 640×480, 800×600, or 1024×768 resolution
Call to Power 2 Good Videos are not working, game supports many resolutions.
Capitalism II Fair Graphical glitches in game (known issue with the game)
Civilization III Very Good 1024×768 only, has some known sound issues.
Dark Colony Very Good requires Linux PC to install, 640×480 only, minor sound issues
Diablo 1 Very Good 640×480 only, requires ddraw patch
Diablo II Complete Edition 1.13d Very Good Videos don’t work, runs in 640×480 or 800×600
Dune 2000 Perfect use high resolution patcher for all kind of resolutions
Earth 2140 Perfect GoG classic Windows versions is only 800×600, reduce sound volume.
Emperor – Rise of the Middle Kingdom Good runs in window mode, annoying sound issues.
Gangsters: Organized Crime Good graphical issues in menu, game is fine, requires gdi rendering
Homeworld: Cataclysm Perfect 3D rendering in software mode, complicated resolution switch
Jack Orlando: A Cinematic Adventure (Director’s Cut) Good 640×480 only, often keyboard input issues
KKND: Krush Kill ‘n Destroy Xtreme Poor 640×480 only, Everything except New Game will crash the game (would be “perfect” otherwise)
KKND2 Krossfire Perfect supports 640×480, 800×600 and 1024×768 as resolution.
Larry 7: Love for Sail Perfect runs in ALL resolutions, you can NOT use “System” wine version
Lionheart: Legacy of the Crusader Very Good 800×600 only, can slow down at times, especially with special effects
Mech Commander Gold Perfect Must be installed on another PC, supports 640×480, 800×600, 1024×768, and 1280×1024 resolution.
Microsoft Office 2007 Perfect Runs directly on your Desktop
Pharaoh and Cleopatra Good runs in 640×480, 800×600 or 1024×768 resolution, suffers from sound issues (echoing)
Rollercoaster Tycoon Deluxe Very Good only minor sound issue, offers window mode which allows to start it on any desktop resolution (without virtual desktop)
Rollercoaster Tycoon 2: Triple Thrill Pack Very Good 800×600 only
Starcraft Very Good 640×480 only, can have slowdowns
Stronghold Crusader HD + Stronghold Crusader Extreme HD Very Good Some sound issues similar to Pharaoh and other games where sounds are played twice, many different resolutions supported including 1080p and 720p
The Tone Rebellion Perfect only runs in 640×480, needs to be installed on another PC
Tropico Gold Perfect offers different resolutions from 640×480 to 1600×1200
Unreal Very Good runs in software mode only, supports many different resolutions

New Ubuntu OS image released for XU4 and HC1

kernel4.9.44.jpg
https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.9/20170824Upgrade your OS to the latest Ubuntu 16.04.3. There has been huge update archived that improve the system and stability.

1. Canonical announced a point release of Ubuntu 16.04.3 a couple of weeks ago.

2. Kernel has changed to 4.9.44 from 4.9.27. There are tons of patches to improve system features.

3. Modern Uboot-2017 has been ported to support the KVM virtualization as well the PXE/TFTP features.

We are happy to release a new OS image with all these improvements.

You can find a release note and a download link in this WiKi page.

https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.9/20170824

If you need a headless server image without heavy desktop GUI for your Home Cloud One , refer this page.

https://wiki.odroid.com/odroid-xu4/os_images/linux/ubuntu_4.9/minimal

If you have any issue, feel free to post it on our community forum. https://forum.odroid.com/viewforum.php?f=92

ODROID-HC1 Power consumption measurement

We could assume the total cost of electricity bill using ODROID-HC1 : Home Cloud One Server 24hours/7days at home.

 

We installed the Ubuntu 16.04 minimal image(Kernel 4.9.44) and FTP, SAMBA, NFS, Plex-Media, Seafile, Serviio,
Transmission and WebDAV server applications were running in background.
It consumes 3.6Watt (average) when it is idle and the attached hard disk drive is in spin-down mode.

Here is the detail analysis of power consumption.
Booting : A peak pulse up to 5V/3A(~15Watt) when the HDD starts to run.
Idle, HDD is still spinning : Around 5-6Watt.
Transferring some big files with SAMBA via Gbit Ethernet interface : 7~9Watt approximately.
Idle, HDD spin-down : Average 3.6Watt.
We believe we can make it even lower if we tweak the CPU governor and scaling frequency options.

We’ve measured the power consumption of the ODROID-HC1 with SmartPower2.

Upstream u-boot for ODROID-XU4.

We are working on the new u-boot porting for XU4 boards.

Here is the source code of the new u-boot.
https://github.com/hardkernel/u-boot/tree/odroidxu4-v2017.05


What we can do with the new u-boot !
1. Enabling the HYP mode for the KVM virtualization with Kernel 4.9 LTS.
2. Enabling the Ethernet device to support the TFTP/PXE remote booting.
3. Booting from various new eMMC chipsets.
4. fatload / ext4load commands are available natively.
5. And many other new features.

We will release a update package in next week for Linux/Ubuntu users.
We are implementing a few more functions(for example, the fastboot protocol) for Android 4.4 and Android 7.1 now.

u-boot booting log from the serial console output.

U-Boot 2017.05-12186-gf98cc91-dirty (Aug 08 2017 – 12:16:58 +0900) for ODROID XU4CPU:   Exynos5422 @ 800 MHz
Model: Odroid XU4 based on EXYNOS5422
Board: Odroid XU4 based on EXYNOS5422
Type:  xu4
DRAM:  2 GiB
MMC:   EXYNOS DWMMC: 0, EXYNOS DWMMC: 1
MMC Device 0 (eMMC): 14.7 GiB
Info eMMC rst_n_func status = enabled
Card did not respond to voltage select!
mmc_init: -95, time 11
*** Warning – bad CRC, using default environment

In:    serial
Out:   serial
Err:   serial
Net:   No ethernet found.
Press quickly ‘Enter’ twice to stop autoboot:  0
reading boot.ini
9088 bytes read in 4 ms (2.2 MiB/s)
cfgload: applying boot.ini…
cfgload: setenv initrd_high “0xffffffff”
cfgload: setenv fdt_high “0xffffffff”
cfgload: setenv macaddr “00:1e:06:61:7a:39”
cfgload: setenv vout “hdmi”
cfgload: setenv cecenable “false” # false or true
cfgload: setenv disable_vu7 “false” # false
cfgload: setenv governor “performance”
cfgload: setenv ddr_freq 825
cfgload: setenv external_watchdog “false”
cfgload: setenv external_watchdog_debounce “3”
cfgload: setenv HPD “true”
cfgload: setenv bootrootfs “console=tty1 console=ttySAC2,115200n8 root=UUID=e139ce78-9841-40fe-8823-96a304a09859 rootwait ro fsck.repair=yes net.ifnames=0”
cfgload: fatload mmc 0:1 0x40008000 zImage
reading zImage
4793144 bytes read in 135 ms (33.9 MiB/s)
cfgload: fatload mmc 0:1 0x42000000 uInitrd
reading uInitrd
5327028 bytes read in 143 ms (35.5 MiB/s)
cfgload: if test “${board_name}” = “xu4”; then fatload mmc 0:1 0x44000000 exynos5422-odroidxu4.dtb; setenv fdtloaded “true”; fi
reading exynos5422-odroidxu4.dtb
61570 bytes read in 9 ms (6.5 MiB/s)
cfgload: if test “${board_name}” = “xu3”; then fatload mmc 0:1 0x44000000 exynos5422-odroidxu3.dtb; setenv fdtloaded “true”; fi
cfgload: if test “${board_name}” = “xu3l”; then fatload mmc 0:1 0x44000000 exynos5422-odroidxu3-lite.dtb; setenv fdtloaded “true”; fi
cfgload: if test “${fdtloaded}” != “true”; then fatload mmc 0:1 0x44000000 exynos5422-odroidxu4.dtb; fi
cfgload: fdt addr 0x44000000
cfgload: setenv hdmi_phy_control “HPD=${HPD} vout=${vout}”
cfgload: if test “${cecenable}” = “false”; then fdt rm /cec@101B0000; fi
cfgload: if test “${disable_vu7}” = “false”; then setenv hid_quirks “usbhid.quirks=0x0eef:0x0005:0x0004”; fi
cfgload: if test “${external_watchdog}” = “true”; then setenv external_watchdog
“external_watchdog=${external_watchdog} external_watchdog_debounce=${external_watchdog_debounce}”; fi
cfgload: setenv bootargs “${bootrootfs} ${videoconfig} ${hdmi_phy_control} ${hid_quirks} smsc95xx.macaddr=${macaddr} ${external_watchdog} governor=${governor}”
cfgload: bootz 0x40008000 0x42000000 0x44000000
Kernel image @ 0x40008000 [ 0x000000 – 0x492338 ] ## Loading init Ramdisk from Legacy Image at 42000000 …
Image Name:   uInitrd
Image Type:   ARM Linux RAMDisk Image (uncompressed)
Data Size:    5326964 Bytes = 5.1 MiB
Load Address: 00000000
Entry Point:  00000000
Verifying Checksum … OK
## Flattened Device Tree blob at 44000000
Booting using the fdt blob at 0x44000000
Using Device Tree in place at 44000000, end 44012081

Starting kernel …

 

[HOW-TO] Finding your ODROID IP Address – Headless

Finding your ODROID’s IP Address from your laptop/desktop computer for remote access like SSH or VNC.

You can find your ODROID by doing what’s known as an “IP Scan” across your whole network. Most home networks will have about 254 possible combinations of IP address, so looking at them all is an easy task for a computer. I tried something called Angry IP Scanner ( http://angryip.org/ ), this runs on Linux, MacOS X or Windows and lets you scan your entire local network to find devices- including any ODROID’s you might be running. When you run Angry IP Scanner it should automatically pick a sensible IP Range for you. All you need to do is press [Start] and keep eyes out for your ODROID. It was much more comfortable than the nmap command for me.

As you can see above, Angry IP Scanner found my ODROID on the local network with its default hostname of “odroid.local” in official Ubuntu image.
Things to remember
1. Your ODROID may have a different IP address depending on whether it’s connected to WiFi or Ethernet, and that address might even change from time to time. If you ever find yourself unable to connect, you can always double-check!
2. Some other OS images might not have the Hostname. So you have to try to access the IP with SSH not to miss your ODROID.
3. If you don’t like the GUI IP scanner(Angry IP), you can use simpler “nmap” command. https://nmap.org/

Benchmark results for Raspberry Pi 3 Model B, ODROID-C1+, ODROID…

We ran several benchmark tests to measure the computing power of the XU4. The same tests were performed on the Raspberry Pi 3 Model B, ODROID-C1+, ODROID-C2 and ODROID-XU4. The values of the test results were scaled uniformly for comparison purposes. The computing power of the XU4 was measured to be ~7 times faster than the latest Raspberry Pi 3 thanks to the 2Ghz Cortex-A15 octa-core and much higher 64bit memory bandwidth. Using the XU4 as a computer provides a “desktop like” experience, unlike the industry wide sluggish performance of most single-board computers! Particularly for developers, compiling code on the XU4 is super fast. The coveted high-performance 2GB DDR3 RAM is an additional advantage allowing most programs to be compiled directly on the XU4.

Benchmarks (Index Score) Raspberry Pi 3 ODROID-C1+ ODROID-C2 ODROID-XU4
Unixbench: Dhrystone-2 865.4 1571.6 2768.2 5941.4
Unixbench: Double-Precision Whetstone (x3) 1113 1887.3 3076.8 6186.3
Nbench 2.2.3: Integer (x40) 619.92 1173.6 1808.92 2430.52
Nbench 2.2.3: Floating-Point (x100) 781.8 1245.3 2300.3 3787.3
mbw100: Memory Bandwidth (MiB/s) 542.912 616.339 1472.856 2591.461

The most affordable high-performance DIY 8TB NAS

A ODROID forum user @linuxest reported the most affordable 8TB external storage could work with XU4 UAS driver in Kernel 4.9.

I also wanted to make my own NAS because my Google Cloud storage was almost full.
I ordered the same storage(STEB8000100) from Amazon. It is US$180 only. 1TB costs $22 approximately.
https://www.amazon.com/Seagate-Expansion-Desktop-External-STEB8000100/dp/B01HAPGEIE

It has arrived here this morning and I have run a few samba performance test with kernel 4.9 on my xu4q. I formatted the storage with EXT4 file system before testing because its stock file system is NTFS.

Downloading an 8GB file to my laptop from the XU4 NAS. It shows 110MB/sec of transfer speed stably.

Uploading an 8GB file to the XU4 NAS from my Windows laptop. It shows 90~100MB/sec of transfer speed.

 

Helios LanTest (3GB transfer option) also shows good performance too.

How to Assemble !

XU4Q and the official case

Velcro tape (3M Scotch 40mm x 25mm 4-pairs)

Attach Velcro tape (loop side) to the XU4Q case bottom

Attach Velcro tape (hook side) to the Seagate HDD case

Place the XU4Q case on the HDD case

Connect cables.
DC plug for HDD, DC plug for XU4Q, Ethernet and USB 3.0 cables.

 

New Ubuntu 16.04.2 LTS with Linux Kernel 4.9 LTS on ODROID-XU4

Hardkernel announced the Linux kernel 4.9.11 support for the ODROID-XU4 and XU3 platforms in late February and we started a debugging party. After ten weeks of debugging party with our community members, we are proudly releasing a new Ubuntu image based on latest Linux kernel 4.9.27 LTS.

We’ve improved and added new features UASP, UHS1 mode, IRQ balancing, HW mouse cursor, HW RTC Alarm, overlayfs, faster armsoc DDX, multi-touch screen and much more. You can find over 300 commits in our GitHub history.
https://github.com/hardkernel/linux/commits/odroidxu4-4.9.y

We’ve packed all the new updates into a new OS image for every XU4 users. This official Ubuntu OS image is available on this link.
http://odroid.com/dokuwiki/doku.php?id=en:xu3_ubuntu_k49_release_note_20170510

We will keep improving and update the Linux OS since we still have some issues.

Note that there is no reliable way to update the Kernel to 4.9 from 3.10.
So please freshly install the new OS image after backup your data.

Linux Kernel 4.9 LTS on ODROID-XU4

Hardkernel proudly announces the Linux kernel 4.9 release for the ODROID-XU4 and XU3 platforms.
This LTS(Long Term Support) kernel 4.9 will be actively updated until early 2019.

Key features of the XU4 hardware are working on kernel 4.9.11 as of today.
Cortex-A15/A7 Octacore HMP, HDMI video and audio, USB 3.0, Gbit Ethernet, Mali-T628MP6 GPU, MFC VPU and eMMC HS400 mode are functional now.

There are tons of commits, patches and merges done for the last few months.
Grab the source code from our kernel 4.9 Github branch.

We must say that Samsung OSG(Open Source Group) helped a lot to make the dream comes true.
They contributed 394 patches that modified 15,856 lines of code in kernel 4.9 tree.

We invite you to a Debugging Party in our community forum. We will pull your ideas, comments and applause.
Try and verify Ubuntu 16.04.2 Mate image which launches the kernel 4.9.11 in that forum too.

Let’s enjoy the party together.

2017-02-22.jpg

Celebrating the beginning of our Third Year of ODROID Magazine!

To celebrate the beginning of our third year, we released a shiny new website for the Magazine earlier this month that includes a searchable article index, user manuals, and a separate Spanish version. Everyone on the staff works very hard to produce the best issue possible each month, and we are proud to say that we have a consistent readership of 10,000 ODROIDians and growing.

 

List of Issues
25th Issue
2016 January
24th Issue
2015 December
23rd Issue
2015 November
22nd Issue
2015 October
21st Issue
2015 September
20th Issue
2015 August
19th Issue
2015 July
18th Issue
2015 June
17th Issue
2015 May
16th Issue
2015 April
15th Issue
2015 March
14th Issue
2015 February
13th Issue
2015 January
12th Issue
2014 December
11th Issue
2014 November
10th Issue
2014 October
9th Issue
2014 September
8th Issue
2014 August
7th Issue
2014 July
6th Issue
2014 June
5th Issue
2014 May
4th Issue
2014 April
3rd Issue
2014 March
2nd Issue
2014 February
1st Issue
2014 January
 ODROID Magazine is a free monthly PDF e-zine available for download at http://magazine.odroid.com as a service to the open-source world-wide ODROID and ARM communities. This cutting-edge online publication brings you the latest ODROID news, as well as featured articles from the expert community that has grown around the amazing ODROID family of micro-powerhouse computers. Intended for all levels of users, ODROID Magazine offers definitive guides for new owners, with easy-to-follow tutorials on setting up your ODROID, installing operating systems and software, troubleshooting common issues, and playing both modern and classic games. For more experienced users, we feature expert tips, programming examples, DIY projects, and other advanced technical topics on exploring new ways of making your ODROID even more versatile. ODROID Magazine is an ideal opportunity for our growing international community to come together to share and contribute articles, so that everyone can be successful with their ODROID. Community members are encouraged to send their submissions and article ideas to odroidmagazine (at) gmail.com. Published authors are eligible for free monthly gift awards from the Hardkernel store at http://www.hardkernel.com. Article guidelines are posted at http://bit.ly/1ypImXs.

 

 

Rob Roy : Editor-In-Chief

“All of the contributors constantly amaze us with their innovations, and some of the highlights from the last two years include a soccer-playing robot, electronic grape synthesizer, a fully automated Pixar lamp with a sassy personality, a Wall-E clone, and an inexpensive yet powerful quad-copter drone. Our regular columnists like Tobias, Venkat and Nanik write fantastic in-depth tutorials and reviews that help our readers find new ways to work with and enjoy their ODROIDs. We always feature more than a few games in each issue as well, since ODROIDs can emulate so many different platforms. My favorites include the wonderful DOS-based games from our childhood, along with modern Android games like Clash of Clans, Beach Buggy Racing, Hearthstone and Five Nights at Freddy’s. We look forward to continuing to produce the best magazine that we can, and are expanding our staff this year with a few more assistant editors. I hope that the ODROID community continues to send us great and fascinating articles, since the community is what really makes our publication thrive.”

 

Bruno Doiche : Senior Art Editor

“ODROID Magazine is more than a project in that some months we toil hard. It is extremely humbling to work side by side with so many talented folks, and to see the power of a community that keeps building its knowledge using the ODROIDs for different reasons, such as gaming, server, hacking, and robotics. I think that we all have the brightest future ahead of us, and what is even better, having endless fun!”

Manuel Adamuz : Spanish Editor

“ODROID magazine is awesome. I have learned to do many things from reading it, such as flashing images, installing and updating the OS, installing and playing games and emulators, and much more. One thing that I love about ODROID magazine is that it has articles for all levels. No matter if you’re a beginner or an expert in Linux, It has something for everyone. I hope that people keep writing articles that are so good and extensive, although that means that I have more work as a Spanish translator 🙂 Happy anniversary!”

Nicole Scott : Art Editor

“Cheers to the third year ODROID Magazine! So much has happened in such a short time. I’m continually impressed with all the developments in ARM technology in both hardware and software. Working on the magazine is both fun and rewarding, as well as a great conversation starter. Having learned so much with each issue, I look forward to seeing what the ODROID inventors, developers, and computer science enthusiasts come up with next!”

James LeFevour : Art Editor

“It’s amazing how much expertise and geeky knowledge gets poured into this magazine every month. I am blown away by how much there is to learn about ODROIDs, and especially how much enthusiasm it promotes. I love being a part of this team!”